76,487 research outputs found

    Fundamental measure theory for mixtures of parallel hard cubes. II. Phase behavior of the one-component fluid and of the binary mixture

    Get PDF
    A previously developed fundamental measure fucntional [J. Chem. Phys. vol.107, 6379 (1997)] is used to study the phase behavior of a system of parallel hard cubes. The single-component fluid exhibits a continuous transition to a solid with an anomalously large density of vacancies. The binary mixture has a demixing transition for edge-length ratios below 0.1. Freezing in this mixture reveals that at least the phase rich in large cubes lies in the region where the uniform fluid is unstable, hence suggesting a fluid-solid phase separation. A method is develop to study very asymmetric binary mixtures by taking the limit of zero size ratio (scaling the density and fugacity of the solvent as appropriate) in the semi-grand ensemble where the chemical potential of the solvent is fixed. With this procedure the mixture is exactly mapped onto a one-component fluid of parallel adhesive hard cubes. At any density and solvent fugacity the large cubes are shown to collapse into a close-packed solid. Nevertheless the phase diagram contains a large metastability region with fluid and solid phases. Upon introduction of a slight polydispersity in the large cubes the system shows the typical phase diagram of a fluid with an isostructural solid-solid transition (with the exception of a continuous freezing). Consequences about the phase behavior of binary mixtures of hard core particles are then drawn.Comment: 14 pages, 6 eps figures, uses revtex, amstex, epsfig, and multicol style file
    corecore